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Quantifying howkey life-history traits respond to climatic change is fundamen-
tal inunderstandingandpredicting long-termpopulationprospects.Ageat first
reproduction (AFR), which affects fitness and population dynamics, may be
influenced by environmental stochasticity but has rarely been directly linked
to climate change. Here, we use a case study from the highly seasonal and
stochastic environment in High-Arctic Svalbard, with strong temporal trends
in breeding conditions, to test whether rapid climate warming may induce
changes in AFR in barnacle geese, Branta leucopsis. Using long-term mark–
recapture and reproductive data (1991–2017), we developed a multi-event
model to estimate individual AFR (i.e. when goslings are produced). The
annual probability of reproducing for the first time was negatively affected by
populationdensity but only for 2 year olds, the earliest age ofmaturity. Further-
more, advanced spring onset (SO) positively influenced the probability of
reproducing and even more strongly the probability of reproducing for the
first time. Thus, because climate warming has advanced SO by two weeks,
this likely led to an earlier AFR bymore than doubling the probability of repro-
ducing at 2 years of age. This may, in turn, impact important life-history trade-
offs and long-term population trajectories.
1. Introduction
Global warming may have dramatic eco-evolutionary consequences [1,2] by
changing long-term population dynamics [3] and the evolution of life-history
traits [4,5]. The fastest warming occurs in the Arctic [6], where, as a consequence,
the timing of snow melt and vegetation growth onset in spring is advanc-
ing rapidly [7,8]. Since the snow-free season is extremely short at high latitudes,
prolonged snow cover often has detrimental effects on reproduction in ground-
nesting birds [9]. Accordingly, advancing springs due to recent climate warming
have proven beneficial [3,10]. Changes in age-specific breeding success can trigger
changes in key life-history traits like the age at which individuals mature [11] or
reproduce [12] for the first time. Age at first reproduction (AFR) is linked to the
fast–slow life-history continuum, where longer-lived species generally exhibit
delayed, and larger individual variation in, AFR [13,14]. An individual’s AFR
will affect its fitness, owing to costs and benefits associated with different life-
history strategies [14,15]. Earlier AFR can be beneficial, by increasing the total
number of reproductive events, but can come at a cost if resources are used that
would otherwise be allocated to growth, survival or future reproduction.
Environmental stochasticity and density dependence can also induce variability
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Figure 1. Multi-state model of barnacle geese. Circles represent ‘true’, unobservable states, with black arrows indicating transitions between states from time t−1 to
t. Squares are observable events and grey-dotted arrows show which event(s) would be observed given an individual’s state.
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in AFR [16,17], as high resource competition or poor breeding
conditions can lead to individuals delaying maturation [18]
or reproduction [11]. While weather conditions are known to
influence annual AFR in some species (e.g. common tern,
Sterna hirundo [19], red deer, Cervus elaphus [20]), the link
between long-term climate change and trends in AFR remains
largely unexplored (but see [21,22]).

Geese migrating to Arctic breeding grounds experience
highly variable spring conditions. Consequently, their repro-
ductive success exhibits large inter-annual fluctuations, while
adult survival is generally high and buffered against variability
[23,24], a commonpattern in long-lived species. InArctic geese,
there is substantial age-related variation in reproduction [25],
as well as temporal variation associatedwith timing of nesting,
density dependence and food availability [26–28]. Although
temporal variation in their AFR has been documented
[29,30], potential environmental causes of this variation have
received little attention. Accurately estimating AFR can be
challenging owing to detection issues and because an individ-
ual’s breeding state is not always ascertainable. Multi-event
models are widely used to quantify state uncertainty, such as
mortality [31] or breeding status [32], by evaluating them
as a hidden Markov process [33]. Here, using a multi-event
framework, we studied causes of variation in AFR, defined
as the first production of goslings, in the female portion of a
population of Svalbard barnacle geese, Branta leucopsis. We
hypothesize that an early spring, which has proven beneficial
for reproduction overall in this population [34], reduces indi-
vidual AFR. Since spring onset (SO) is advancing rapidly,
this predicts, in turn, a temporal decline in AFR.
2. Material and methods
(a) Study species and data collection
Our study population of breeding barnacle geese is located around
Ny-Ålesund (Kongsfjorden), Svalbard (78.9°N, 11.9° E). The
Svalbard flyway population overwinters at Solway Firth, UK
(55° N, 3.30°W), then travels north in spring with a stopover
along mainland Norway before arriving at the Svalbard breeding
grounds. Barnacle geese are long-lived (up to 28 years-old) and
become sexually mature at 2 years of age [25,35]. They are partial
capital breeders, using reserves acquired atwintering and stopover
sites earlier in the annual cycle to initiate reproduction [36,37].Over
a 26 year period (1991–2017), 480 female goslings were caught at
Ny-Ålesund and ringed with unique colour and metal bands
during moulting (July/August). Geese nest on islands during
May–June. After hatching, families return to Ny-Ålesund to
forage, where ringed adults and associated goslings are recorded,
resulting in 3006 individual observations used tomodel AFR (elec-
tronic supplementary material, appendix S1a). Males were
excluded from the dataset owing to lower recapture rates [35].
Date of SO and adult population density (POP) were included as
time-varying covariates. Accumulated winter snowfall [38] was
included initially, but showed no evidence of an effect. SO is the
(ordinal) daywhen the 10 day smoothed daily temperature crosses
0°C and remains above for at least 10 days [39] and has been shown
to affect egg production [34]. POP is an annual estimate of adult
numbers in the study population, which negatively affects gosling
production and fledgling recruitment [34,40].

(b) Statistical analysis
Mark–recapture data were used to estimate AFR, where reproduc-
tion is defined as a female producing goslings (recorded at the
foraginggrounds, see electronic supplementarymaterial, appendix
S1a).Dataconsistedof individual capture histories of female barna-
cle geese, recorded as observed with at least one gosling, observed
without goslings, or not observed, in a given year. A multi-event
model, run in program E-SURGE (Multi-Event SURvival General-
ized Estimation; v. 2.1.4 [41]), was used to separate states,
representing the ‘true’ reproductive status of an individual in a
given year, and events, i.e. the observed state of an individual. We
modelled four states, pre-breeder (PB), non-breeder (NB), breeder
(B) and dead (†). PB was any individual not breeding at year t
that hadnever bredpreviously.NB included individuals not breed-
ing at year t but that had bred in a previous year. B was any female
that produced at least one gosling at year t and † includes dead and
permanently emigrated individuals. Three eventswere considered:
‘not seen’, ‘seen as breeder’ and ‘seen as non-breeder’. Only indi-
viduals in the B state could give rise to a ‘seen as breeder’ event,



Table 1. Explanations of terminology.

terminology meaning definition

AFR age at first reproduction the age at which a female first produces goslings that survive to the

foraging area (around Ny-Ålesund)

state true annual state PB, B, NB and †; not always observable; an individual without goslings may be

PB or NB, depending on its reproduction history

transition shift between states from

year t−1 to year t
transition probability from any (living) state at t-1 (i.e. B, PB, NB) to state B at year

t represents the breeding probability at year t

event annual observed reproductive situation events include seen as a breeder (i.e. with goslings), non-breeder and not observed

PB pre-breeder state of females that have yet to produce goslings for the first time (Note: reproduction

probability of PB refers to individuals in PB at t−1 that transitioned into B at t.)

B breeder state of birds producing one or more goslings in a given year

NB non-breeder state of birds not producing goslings during breeding season but having bred previously

† dead state dead includes dead and permanently emigrated individuals

SO spring onset date (ordinal) day when 10 day smoothed daily temperature crosses 0°C and remains above

for at least 10 days

POP population density annual estimated number of adults in the study population at Ny-Ålesund

Table 2. Ten highest-ranked models of transition probabilities for PB and NB/B to B. k = number of parameters for transition estimations, excluding survival
and recapture (k = 54).

rank model ψPB→ B model ψB/NB→ B k AICc ΔAICc

1 age2–3+ × POP + SO SO 6 9760.9 0

2 age2–3+ × POP + SO SO + POP 7 9762.1 1.2

3 age2–4+ × POP + SO SO 7 9762.4 1.5

4 age2–3+ × POP age2–4+ × SO SO 9 9763.4 2.5

5 age2–4+ × POP + SO SO + POP 8 9763.5 2.6

6 age2–3+ × POP age2–3+ × SO SO 8 9764.9 4.0

7 SO SO 4 9773.3 12.4

8 SO + POP SO 5 9773.5 12.6

9 age2–4+ × SO + POP SO 7 9774.3 13.4

10 SO SO + POP 5 9774.6 13.7
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whereas both PB and NB states contributed to ‘seen but not breed-
ing’ events, and individuals in all three states could be recorded in a
‘not seen’ event (figure 1). See table 1 for definitions.

Goodness-of-fit (GOF) tests on a simplified, multi-state dataset
(n = 687, four states: PB, B, NB, not observed) in program U-CARE
(v. 2.3.4 [41]) indicated transience, which was accounted for by
modelling age-dependent apparent survival, and trap-history-
dependent recapture, which was not considered problematic for
this analysis (see electronic supplementary material, appendix
S1b for details). Details on model implementation are to be
found in electronic supplementary material, appendix S1c.

Following [40] and the GOF tests, annual survival probabilities
were modelled for goslings, yearlings and adults, including year
effects, and recapture probabilities were modelled as year-specific.
Transitionprobabilities (ψ) to thebreeding statewere assumed tobe
the same from NB and B states (ψNB/B→ B). We compared models
with covariates (SO, POP) on transition probabilities from PB to B
(ψPB→ B) and from NB and B to B (ψNB/B→ B). An age effect was
included on ψPB→ B, where females of 4 years or older were
pooled because of reduced sample sizes thereafter.Model selection
was based on Akaike’s information criterion corrected for small
sample sizes (AICc). A model was considered a better fit when
ΔAICc was reduced by at least 2 [42]. Confidence intervals for par-
ameter estimates were calculated using the delta method [43].

Using the Viterbi algorithm in E-SURGE, we reconstituted
the 30 most-probable life histories for each individual, and
their probabilities, based on the highest-ranked model. From
the output, we estimated the AFR distribution in the population
and the annual proportion of breeding 2 year olds (electronic
supplementary material, appendix S2).
3. Results
The best-fitting model (table 2) explaining the pre-breeder to
breeder transition (ψ PB→ B) included an effect of SO and an
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Figure 2. (a) Effect of spring onset date, SO, on reproduction probability of first-time ( pre-breeders, PB) and experienced (non-breeders or breeders, NB/B) mothers.
(b) Population density, POP, effects on age classes 2 and 3+ in PB. Annual (c) estimated proportion of 2 year olds reproducing, (d ) SO and (e) POP. Dashed lines
indicate (c) trend towards an increasing proportion of 2 year old individuals reproducing for the first time, estimated with E-SURGE (see Methods), and (d ) advancing
spring phenology.
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interaction effect between age class and POP. The non-breeder/
breeder to breeder transition (ψNB/B→B) also included a SO
effect (ψNB/B→B (logit scale) β =−0.29; 95% CI =−0.40, −0.17),
which was weaker than on ψPB→ B (−0.44; −0.63, −0.25), as the
mean estimate of ψPB→B was outside the confidence interval
of ψNB/B→ B. In other words, the probability of producing gos-
lings decreased with delayed SO and more so for first-time
breeders (figure 2a). POP had a negative effect on the prob-
ability of reproducing for the first time for females of age 2
years (−0.60; −0.93, −0.28) but no effect on ages 3 years and
older (0.12; −0.09, 0.34) (figure 2b).

Based on estimated individual AFR, 35% of individuals
reproduced for the first time as 2 year olds, while 88
and 97% had reproduced by 5 and 10 years of age, respecti-
vely (electronic supplementary material, appendix S2). The
top-ranked model suggested that a substantial number of indi-
viduals that were not observed as 2 year olds were breeding
(appendix S2). Furthermore, the estimated proportion of 2
year olds reproducing each year more than doubled over the
study (figure 2c) and the date of spring onset, SO, advanced
by approximately two weeks (β =−0.55, s.e. ± 0.19, p-value <
0.01, figure 2d). This provides support for our prediction of
declining AFR over time with advancing spring phenology.
Population densities, POP, showed no significant temporal
trend (β =−0.01, s.e. ± 4.1, p-value = 0.99, figure 2e).
4. Discussion
This long-term study of Svalbard barnacle geese documents
empirically the link between global warming and AFR, a key
life-history trait. Although some (poor) individuals produce
goslings for the first time later in life, AFR appears strongly
linked to annual fluctuations in nest-site and resource avail-
ability. Earlier SO increased the probability of producing
goslings, especially for females reproducing for the first time,
suggesting that inexperienced breeders are more affected
by environmental variation. Advancing SO, associated with
ongoing climate warming, led to an increasing proportion of
reproducing 2 year olds (i.e. age of sexual maturity) over the
study. Density dependence, also operating through resource
availability, only affected the probability of producing goslings
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for 2 year olds. This suggests that barnacle geese generally
start breeding as 2 year olds and only poor conditions–i.e.
cold springs or high densities—force them to delay. In such
cases, AFR is likely to change over time with long-term
trends in breeding conditions.

Spring phenology can affect AFR since it impacts both
clutch success/size and hatching success, through effects on
the timing of nesting and food availability during incubation
[26,27,34]. Colder springs delay snowmelt, and therefore
nest-site availability, but also the timing of food availability
by delaying plant growth onset [34]. Similarly, under delayed
snowmelt, female geese initially use retained reserves for
self-maintenance rather than egg production [44] and take
more frequent, and longer, breaks from incubation to forage,
increasing egg predation risk [28,45].

Density dependence affects reproduction and thereby
potentially the age at which females produce goslings. Here,
2 year olds were less likely to produce goslings in years with
higher densities (i.e. higher intraspecific competition), sup-
ported by similar findings from a Baltic population of
barnacle geese [30]. Reproductive success was also found to
be age-dependent in the Baltic population [25], explained by
increasing experience/social status with age. This may explain
the impact of increased competition on young geese that are
forced to settle at sub-optimal nesting sites as densities increase
[46]. Better nest-sites have more forage available, limiting time
spent off the nest for incubating females, limiting egg predation
risk. The same mechanismmay also have contributed to stron-
ger effects of SO on pre-breeders (typically younger
individuals), since late springs increase snow cover and
thereby nest-site availability.

Globalwarming is having profound effects on reproduction
in Arctic geese and other Arctic herbivores [34,47]. Our results,
from one of the most rapidly warming places on Earth [6],
indicate that climate change is affecting key life-history traits
like AFR. Climate change is advancing spring, providing an
explanation for the increasing proportion of 2 year olds repro-
ducing and thereby earlier AFR. Reproduction is the main
driver of population dynamics in geese, and any changes
have substantial population-level effects [40]. However,
increased production of goslings will, to some extent, shift the
age structure towards a larger proportion of young individuals
that are more sensitive to density-dependent processes, poten-
tially counteracting benefits of earlier AFR somewhat.
Additionally, here, AFR refers to production of goslings, but
survival to fledging is highly variable and susceptible to preda-
tion [34,48]. Earlier AFR may also incur a cost through reduced
future reproduction or survival, which was not possible to test
here, but care should be taken when inferring population-
dynamic implications. For long-distance migrants like Arctic
geese, following the food-peak across migratory sites is an
important evolutionary strategy [49,50]. However, they may,
eventually, be unable to keep upwith fast-changing spring con-
ditions [51], leading to phenological mismatch in food-web
interactions [52,53], with potentially negative reproductive con-
sequences [54]. Nevertheless, this population shows no current
indication of mismatch effects [34]. On the contrary, Arctic cli-
mate change appears to allow higher gosling production and
earlier AFR, which may have positive consequences for popu-
lation persistence.
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