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Abstract

The advancement of spring is a widespread biological response to climate

change observed across taxa and biomes. However, the species level responses

to warming are complex and the underlying mechanisms are difficult to disen-

tangle. This is partly due to a lack of data, which are typically collected by

direct observations, and thus very time-consuming to obtain. Data deficiency is

especially pronounced in the Arctic where the warming is particularly severe.

We present a method for automated monitoring of flowering phenology of

specific plant species at very high temporal resolution through full growing sea-

sons and across geographical regions. The method consists of image-based

monitoring of field plots using near-surface time-lapse cameras and subsequent

automated detection and counting of flowers in the images using a convolu-

tional neural network. We demonstrate the feasibility of collecting flower phe-

nology data using automatic time-lapse cameras and show that the temporal

resolution of the results surpasses what can be collected by traditional observa-

tion methods. We focus on two Arctic species, the mountain avens Dryas octo-

petala and Dryas integrifolia in 20 image series from four sites. Our flower

detection model proved capable of detecting flowers of the two species with a

remarkable precision of 0.918 (adjusted to 0.966) and a recall of 0.907. Thus,

the method can automatically quantify the seasonal dynamics of flower abun-

dance at fine scale and return reliable estimates of traditional phenological vari-

ables such as the timing of onset, peak, and end of flowering. We describe the

system and compare manual and automatic extraction of flowering phenology

data from the images. Our method can be directly applied on sites containing

mountain avens using our trained model, or the model could be fine-tuned to

other species. We discuss the potential of automatic image-based monitoring of

flower phenology and how the method can be improved and expanded for

future studies.

Introduction

Climate change is influencing phenology across taxa and

ecosystems and a trend towards advancement of spring is

widely observed (Collins et al., 2021; H€allfors et al., 2020;

Menzel et al., 2020; Parmesan, 2006). However, species

vary in their responses to climate change and some spe-

cies and populations elicit seemingly counterintuitive phe-

nological responses (Cook et al., 2012; Prev�ey et al., 2019;

Rafferty et al., 2020; Thackeray et al., 2016). For instance,
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species that are apparently non-respondent to warming

can have opposite responses to fall/winter and spring

warming, and observed trends in first flowering dates

across species may thus depend on their relative sensitiv-

ity to these variables (Cook et al., 2012). Differential

responses between interacting and interdependent species,

for example flowers and their pollinators, to climate

changes may disrupt their temporal synchrony (Visser &

Both, 2005). To disentangle and quantify the intricate

effects of climate change on phenology, we must study

phenology at the species level. However, recording phe-

nology is logistically challenging and is mostly done at a

coarse temporal resolution with potentially poor change

detection ability as a consequence (Arft et al., 1999).

Flower phenology is often described by a single variable

related to the date of first flowering (Fox &

J€onsson, 2019; Miller-Rushing et al., 2008; Prev�ey

et al., 2019). Such data may be too simplistic to capture

how flowering seasons change in relation to climate

change (Iler et al., 2013b; Inouye et al., 2019; Myers-

Smith et al., 2020). For example, first, peak, and last flow-

ering may not shift uniformly, and relying solely on the

date of first flowering may overestimate shifts in peak

flowering and fail to predict shifts in the last flowering,

and hence fail to adequately detect responses to climate

change (CaraDonna et al., 2014). Recording flower phe-

nology across full growing seasons may remedy this, but

this is rarely feasible within traditional sampling schemes

relying on human observations (Koide et al., 2019; Prev�ey

et al., 2017; Rafferty et al., 2020). For manual sampling,

data collection is limited by the frequency with which

field sites and sampling plots can be visited. With the

magnitude of reported trends in phenology at a few days

per decade (CaraDonna et al., 2014; Menzel et al., 2020;

Post et al., 2018; Thackeray et al., 2016), even weekly

observations of individual plots introduce substantial

uncertainty in the estimates of long-term trends. Further,

manual sampling is prone to observer bias (Richardson

et al., 2007). Recording species-specific flower phenology

at sufficient temporal and spatial resolution, such that

effects are not masked by sampling error or insufficient

sampling frequency, requires efficient and preferably auto-

mated methods.

The Arctic is warming at three times the rate of the

global average (AMAP, 2021), and responses of Arctic

species to climatic changes can be particularly dramatic

(Høye, Post, et al., 2007; Post et al., 2018). Yet, phenol-

ogy data for the Arctic have been limited (Diepstraten

et al., 2018; Metcalfe et al., 2018), though recent synthesis

efforts have produced a broader foundation using tradi-

tional methods (Prev�ey et al., 2021). Long-term monitor-

ing data are immensely valuable for studying phenology

dynamics, particularly for investigating the complex

responses to climate change (Iler et al., 2013b; Oberbauer

et al., 2013). However, maintaining long-term monitoring

schemes is challenging, especially in the Arctic (Post &

Høye, 2013). Non-permanent funding, evolving method-

ologies, changing study priorities and observer error can

have negative effects on data integrity and complicate

analyses and interpretation of long-term datasets. Thus,

methods that can facilitate reliable and efficient long-term

data collection in remote and challenging locations are in

high demand.

Image-based monitoring of phenology based on green-

ness analyses has been demonstrated both on the land-

scape level (Brown et al., 2016) as well as for specific

species, such as Dryas integrifolia (Beamish et al., 2016).

These studies have highlighted the effectiveness of image-

based monitoring in reducing the load of fieldwork while

increasing the resolution of the obtained data. However,

image-based methods often still require substantial man-

ual efforts in order to extract ecologically relevant data,

which limits the scale at which they can be applied. In

recent years, artificial intelligence systems, particularly

deep learning, have undergone rapid advancement, but

despite the great potential of especially image-based meth-

ods such as convolutional neural networks (CNNs), they

are not yet well established within the field of ecology

(Christin et al., 2019; Høye et al., 2021; Weinstein, 2018).

Adapting and implementing such methods would facili-

tate a temporal and spatial upscaling of ecological data

and allow ecologists to study ecological phenomena at the

scale at which they occur (Estes et al., 2018; Pimm

et al., 2015; Weinstein, 2018).

Our aim for this work was to investigate the feasibility

of automating the monitoring of species-specific flower

phenology at a large spatial scale and high temporal reso-

lution using near-surface time-lapse cameras. Further, we

explored the potential for using deep learning for the

extraction of phenology data from the image series by

automated detection and counting of flowers. We tested

the method on two plant species, Dryas octopetala and D.

integrifolia (Murray, 1997). The species are among the

most common in tundra plant phenology monitoring

programs (Welker et al., 1997) and automated methods

would therefore be particularly relevant for them. Previ-

ous studies showed promising results for the detection of

Dryas flowers (€Arje et al., 2019; Tran et al., 2018),

although individual separation of flowers was poor, which

is a requirement for accurate estimation of flower phenol-

ogy based on automatic flower counts. We expect that a

standardized and automated monitoring workflow will

facilitate a better understanding of flower phenology and

the effects of climate change through large and accurate

datasets. Further, image-based monitoring has great

potential for expansion and could be leveraged, for
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example, in studies on plant reproductive phenology and

interactions with flower-visiting insects. Image series can

hold a great deal of information and as methodologies for

image analysis evolve, existing image datasets can be re-

analyzed and new results can be derived.

Materials and Methods

Study sites and study species

For this study, we collected 20 images time-lapse image

series from three different locations. From one location

images were collected over two seasons. We hereafter refer

to each location/year combination as a site. Five image

series were collected from each of the following sites

(sampling years given in parentheses): Narsarsuaq, South

Greenland (2018 and 2019), Thule, North-West Green-

land (2018), and Ny-�Alesund, Svalbard (2019). The cam-

eras were permanently positioned above cushions of D.

integrifolia (Narsarsuaq, Thule) or D. octopetala (Ny-�Ale-

sund) before the start of the flowering season and

recorded images throughout the season.

The two species of Dryas are widespread, perennial,

cushion-forming evergreen dwarf-shrubs and are native to

arctic and alpine regions of Europe, Asia, and North

America with a geographically separated distribution

except for a likely hybrid zone in Northeast Greenland

(Høye, Ellebjerg, & Philipp, 2007; Philipp & Siegis-

mund, 2003). The insect-pollinated flowers have white

petals and a yellow center and are held erect above the

cushion. Flowers of D. octopetala are characterized by

having eight petals, while D. integrifolia have up to 11.

Since the two species are very similar in appearance and

each of our sites only contains one species, we treated the

two species as one.

Image collection

We used consumer-grade wildlife cameras (Moultrie

Wingscapes TimelapseCam Pro, Moultrie Products, Birm-

ingham, AL, USA) positioned above cushions of Dryas.

The cameras were mounted facing toward the ground on

custom-made metal mounting frames (Fig. 1). Images

were recorded at the highest possible resolution (20 MP).

The cameras allow for manual focusing at a short range

(down to 15 cm) and are equipped with a LED flash for

photography in low lighting. We powered the cameras by

either solar power using a central solar panel, a 12 V

100 Ah lead battery, and a power distributor for a clutch

of six cameras, or by lithium AA batteries. On AA batter-

ies and with a time-lapse interval of 1 min, a camera can

run continuously for more than 2 weeks and record

24 000 images at 20 MP, which typically fits on a 128 GB

SD memory card. Decreasing the time-lapse interval

reduces power consumption and increases runtime. On a

continuous power source, such as solar power, the run-

time of the cameras is restricted purely by the memory.

We successfully ran the cameras with 512 GB SD memory

cards allowing for storage of almost 100 000 images and a

constant runtime of around 70 days with 1-min imaging

frequency.

Image preprocessing

While the original time-lapse frequency was higher to

allow for potential detection of flower visitors at a later

stage, here we subsampled the time-lapse image series to

1-h intervals. Maintaining a relatively high temporal reso-

lution of 1 h ensures that any diurnal variation in the

images is captured. As some cameras ran for an extending

period before and after the flowering season, we truncated

the tails of each series to a maximum of flowering season

length � 50%. These series are hereafter referred to as

the 1-h series. All series spanned full growing seasons,

meaning the image collection was initiated before the first

flowering and terminated after the last flowering, except

for three series: NARS 2019 D and E failed to capture the

onset of flowering and had one and 22 flowers in bloom,

respectively, in the first image of each series. THUL 2018

A failed to capture the end of the flowering and had one

flower in bloom in the last image of the series. Two series

had missing data spanning more than a full day within

the flowering season: THUL 2018 E: 5 days (DOY 190–
194); NYAA 2019 D: 1 day (DOY 194). The cameras col-

lected images for a total of 1274 days.

To create a set of images on which to test the manual

and automatic derivation of phenology variables, we iden-

tified the images containing the first and the last flower,

respectively, for each series and randomly sampled a set

of images from each series within these limits. The images

from the time-lapse series vary in lighting conditions

throughout the day and the flowers can change appear-

ance across the day and the flowering season. Further, the

background varies between the different sites and

throughout the season. In order to train a flower detec-

tion model with high generalization ability, the training

data should cover the full variation in the appearance of

the flowers. As manual flower annotations were to be

used for both manual derivation of phenology variables

as well as for training an automatic flower detection

model, we ensured that this variation was captured in the

annotated images by sampling images in batches across

all series and sequentially annotating them. Each batch

contained 25 randomly sampled images from each 1-h

series. If <25 images were left for a given image series,

sampling from that series was skipped. Images that did
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not contain flowers were removed in the annotation pro-

cess (72 images did not contain flowers and were

removed before training and testing the automatic flower

detection model). The sampling approach ensures a fair

evaluation of the automatic detection method in the sense

that the annotator cannot use information from the pre-

vious or following images which is also the case for the

detection model. However, in cases where the manual

approach for quantifying phenology from images is

adopted, leveraging information from flanking images is

likely to ease the annotation workflow and reduce the risk

of noise in the annotations. In total, eight batches,

amounting to 3771 images were sampled and annotated

for flowers. These images are hereafter referred to as the

sampled series. The number of images per day depends

on the length of the flowering season for a given series.

The sampled series contained a minimum of 4.6 images

on average per day (NARS 2018 C) and maximum of

18.8 images on average per day (THUL 2018 A). The

sampling approach ensures a dataset that is balanced in

regards to the total number of images sampled from each

series, which is important for a fair assessment of the

automatic flower detection model.

Manually deriving flower phenology from
time-lapse images

We focused on three key phenological variables; onset,

peak, and end of flowering, defined as the times when

10%, 50%, and 90% of the flowers in bloom had been

recorded, respectively. To manually derive these, we

annotated all flowers in bloom (a total of 33 548) in the

sampled image series using the rectangular annotation

tool in the VIA VGG annotation software (Dutta &

Zisserman, 2019). Flowers were defined as in bloom from

when the yellow reproductive organs were visible in the

opening bud until the moment the flower had lost >50%
of its petals or when the petals had changed color to yel-

low/brown. Flowers that crossed the edge of the image

frame or that were covered by other flowers were only

annotated when >40% of the flower was visible. This

decision was taken by considering the standard practice

in object detection methods, where performance is

derived based on the overlap, calculated as the intersec-

tion over union (IoU), between bounding boxes from

manual annotations and detections. Overlap above a cer-

tain threshold is considered a correct detection. Standard

threshold choices for generic object recognition are IoU-

50%, IoU-70%, and IoU-90%. We calculated the cumula-

tive sum of annotated flowers across the season for each

of the 20 series and extracted the time points for the

observation closest to each of the phenology variables

(10%, 50%, and 90%). Owing to the high temporal reso-

lution of the data, there was no need for linear interpola-

tion between observations.

Automatically deriving flower phenology
from time-lapse images

For automatically deriving the phenology variables from

the images, we trained a CNN to detect the flowers in

the images. There are many deep learning networks for

object detection publicly available, with You Only Look

Once (YOLO) and the Faster Region-based Convolu-

tional Neural Network (Faster R-CNN) (Redmon

et al., 2016; Ren et al., 2017) being among the most

well-known. Generally, YOLO has the advantage of fast

processing times, while Faster R-CNN obtains higher

Figure 1. A cluster of six time-lapse cameras mounted above cushions of Dryas integrifolia and a solar panel in Narsarsuaq, Greenland, 2019.

Photo: HMRM.
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detection accuracy (Redmon & Farhadi, 2018). As we

prioritized accuracy rather than the speed we imple-

mented the Mask R-CNN (He et al., 2017), an extension

of the Faster R-CNN, for the detection of flowers in

images. We used an open-source implementation of

Mask R-CNN based on Tensorflow (Abadi et al., 2016)

and Keras (Chollet, 2015) and written in Python. The

code is publicly available on GitHub (https://github.com/

matterport/Mask_RCNN) (Abdulla, 2017). The Matter-

port Mask R-CNN repository provides pre-trained

weights for the COCO dataset (328 k images and

2.5 million labeled instances) (T. Y. Lin et al., 2015).

Before training, we tested the influence of adjusting key

hyperparameters on the detection accuracy of the Mask

R-CNN model (Fig. S1) and found a model with stan-

dard settings but with an extended image augmentation

pipeline performed the best, and we used this approach

for our model. We trained our model by fine-tuning the

pre-trained weights on our dataset of annotated flowers,

a process referred to as transfer learning (Girshick

et al., 2014). Transfer learning leverages large datasets for

training the model to detect and discriminate features in

images, and the model is then subsequently adapted to a

specific use case by fine-tuning on a smaller dataset. The

training was continued until overfitting, detected by a

rise in the validation error, and early stopping was used,

that is, the model that was output at the epoch step

returning the lowest validation error was chosen as the

final model. This approach ensures that the model with

the best ability to generalize is chosen. We tested the

influence of image resolution on detection accuracy and

inference speed when running detections (Fig. S2) and

found that downscaling the images to a resolution of

760 9 427 pixels from the original 6080 9 3420 pixels

gave the best detection accuracy while also vastly increas-

ing inference speed compared to higher resolution

images. We used this image resolution for flower detec-

tion with our model.

Training and testing the flower detection
model

Training a neural network to detect a specific type of

object requires a set of training and validation data,

specifically a set of images in which the objects have been

annotated. The model learns the features of the object of

interest from the training data and repeatedly measures

its prediction performance on the validation data. The

performance achieved on the validation set is used to

decide when to stop the training process. Additionally, a

test set, an independent set of annotated images to evalu-

ate the generalization ability of the deep learning model

(i.e., its ability to perform well on images that are not

included in the training process) is required. We used the

set of manually annotated images from the 20 sampled

series to train and test our flower detection model. To

ensure independency between images used for training,

validation, and testing, all images from a single camera

were used in only one of these sets. Three image series

from each of the four sites were used for training, one

from each site for validation, and one from each site for

testing, yielding a total of 12 training series, four valida-

tion series, and four test series. The decision on which

specific series from a site would be assigned to training,

validation, and testing was based on minimizing the devi-

ation from a 5:2:3 split in terms of number of individual

flower annotations. The split was chosen to ensure suffi-

cient data in all three sets. The final training set contained

18 008 annotations in 2183 images from 12 image series,

the validation set contained 6468 annotations in 752

images from four image series (NARS 2018 E, THUL

2018 C, NARS 2019 A, NYAA 2019 D), and the test set

contained 9073 annotated flowers in 764 images from

four image series (THUL 2018 A, NARS 2018 D, NARS

2019 B, and NYAA 2019 C). Including images from all

four sites in the training maximizes the degree of varia-

tion in the training data. Similarly, including image series

from each site in the test set ensures that the generaliza-

tion capability of the model is tested.

To evaluate the accuracy of our flower detection model,

we compared the model detections in the test set of

images with the manual annotations in the same images.

We present the precision (ratio of the number of true

positives to the total number of predictions), recall (ratio

of the number of true positives to the actual number of

objects), and F1 score (weighted average of precision and

recall) using an IoU threshold value of 0.5 to determine

satisfactory overlap between bounding boxes of the man-

ual flower annotations and the detections. Thus, the man-

ual annotations represent a ground truth on which the

automatic detections are evaluated. Note that any discrep-

ancies between the detections and ground truth are

always considered an error of the CNN and not an error

of the manual annotations. Collectively, the method of

evaluating the precision of the flower detection model is

therefore conservative. For practical reasons, the shift

between flowering stages was considered instant during

the annotation process. However, as it is in reality grad-

ual, we hypothesized that the false-positive predictions

produced by the flower detection model could be biased

toward flowers in stages before and after what we consid-

ered a flower in bloom. Further, only flowers where more

than 40% of the flower was visible were annotated, but

the flower detection model may be capable of recognizing

flowers even if they are only partly visible, which would

also be counted as false positives. To investigate these
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issues further, we quantified what proportion of the false

positives (i.e., bounding boxes from the automatic flower

detections that did not overlap with manual annotations)

were actually flowers in any stage or size. We obtained an

adjusted precision score for the model by including these

as correct positives. False-positive detections that could

not be recognized as a flower with certainty were not

included and neither were single petals lost from flowers.

Applying the model to the test set and comparing it to

the manual annotations in the same images accurately

measures its ability to detect flowers. However, in order

to test the feasibility of automatically deriving the phenol-

ogy variables from image series without preprocessing, we

also ran the flower detection model on the 1-h image ser-

ies and compared the derived phenology variables to the

sampled series.

Results

Manually derived flowering phenology

The manual flower annotations gave detailed information

on the phenology of the flowers in each plot. With several

images annotated for flowers per day for each series, we

obtain flower counts across the season in very high tem-

poral resolution. In Figure 2, we present the phenology

variables obtained for each series as well as the distribu-

tion of flowers through the season represented as the

mean number of flowers annotated per day (number of

flowers annotated per image through the season is given

in Fig. S3).

Automatic flower detection

Our flower detection model reached a precision of 0.918

and a recall of 0.907. Thus, 8.2% (N = 738) of the

detected flowers were false positives and 9.3% (N = 843)

of the 9073 annotated flowers in the test set were not

detected (i.e., false negatives). The performance corre-

sponds to an F1 score of 0.912. However, we found that

58.8% (N = 434) of the 738 false positives produced by

the model actually constituted flowers, but that these were

either categorized in a stage other than bloom or were

<40% visible and hence not considered valid observations

during annotation. Including these as correct detections

increased the precision of the flower detection model to

0.966 (F1 = 0.936). Figure 3 shows example images from

each of the four test series with the corresponding results

obtained with the flower detection model.

Automatically-derived flowering phenology

The automatic flower detections on the sampled images

as well as on the 1-h image series from the test set closely

resembled the seasonal flowering dynamics derived by the

manual annotations (Fig. 4A presents the mean number

of flowers per day while the number of flowers per image

is given in Fig. S4). Consequently, the cumulative sum of

flower counts followed very similar trajectories for the

annotations of the sampled series, the detections on the

sampled series, and the detections on the 1-h series for

the four test series (Fig. 4B). The derived onset, peak, and

end of flowering showed much more variation between

Figure 2. (A) The phenology variables extracted from the flower detections for each of the 20 image series. Black dots show time for the first

and last flower in the series. (B) Mean number of flowers annotated per day through the season for each image series.
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the four test series than between detections and ground

truth observations. The deviation between the ground

truth onset of flowering and those derived from the auto-

matic detections on the sampled series was 5.0 � 6.7 h

(mean � SD). For peak flowering, the deviation was

8.0 � 4.4 h, and for end flowering the deviation was

21.5 � 18.0 h. The deviation between ground truth val-

ues and those derived from the automatic detections on

the full series was 11.0 � 7.1, 8.0 � 7.5, and

46.5 � 13.0 h for onset, peak, and end flowering, respec-

tively.

Discussion

In this study, we demonstrate how time-lapse cameras

can be used for detailed monitoring of flowering phenol-

ogy of specific plant species across the length of growing

seasons. Image-based monitoring with time-lapse cameras

allows for automatic data collection at a much-needed

increased temporal resolution compared to traditional

methods. Depending on the time-lapse frequency of the

cameras and assuming a constant power source and suffi-

cient memory, the cameras can run through full growing

Figure 3. Example image from each of the four test series with bounding boxes for positives (correct flower detections) as green rectangles, false

negatives (flowers that were not detected) as blue rectangles, and false positives (incorrect flower detections) as red rectangles. Top left: NARS

2019 B, top right: NYAA 2019 C, bottom left: NARS 2018 D, bottom right: THUL 2018 A.

Figure 4. (A) Mean number of flowers annotated (sampled images) and detected (sampled series and 1-h series) per day through the season for

each of the four image series in the test set. Hatched lines show the times for the first and last flower in the series. (B) Cumulative sum of the

number of flowers annotated (sampled images) and detected (sampled series and 1-h series) through the season for each of the four image

series. Hatched lines mark 10%, 50%, and 90%.
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seasons, only requiring attendance at setup and data

retrieval. This makes the image-based methodology opti-

mal for monitoring at logistically challenging sites, espe-

cially for long-term monitoring, as equipment can be

continually used across multiple seasons. Across the 20

cameras, we collected images for a total of 1274 days. We

obtained detailed information on flower phenology in 20

sample plots at four different sites from manual flower

annotations of a randomly sampled subset of images. For

large-scale monitoring covering many sites, the produc-

tion of manual flower annotations becomes unfeasible.

Our dedicated deep learning model resolves the challenge

of extracting relevant data from the image series and can

compute very accurate flowering phenology curves. Col-

lectively, the presented method is an automated pipeline

for detailed, species-specific recording of flowering phe-

nology across seasons.

Phenology variables are traditionally derived by inter-

polation between flower counts from, typically, weekly

observations of permanent plots (Iler et al., 2013a), which

introduces considerable uncertainty to the estimates. We

derived the onset and end of flowering based on 10% and

90%, respectively, of the flower counts instead of, for

example, the timings of the first and last single flower

observation. This avoids excessive emphasis on extreme

outliers and reduces sensitivity to flower abundance in

the plot. The high temporal resolution of our image-

based method means that we can identify these variables

based on much more well-defined distributions of obser-

vations. Therefore, it is reasonable to assume that the true

date of events can be more accurately estimated by high-

frequency time-lapse image series than by traditional

direct observation methods. Such increased accuracy will

facilitate an improved understanding of the relationship

between phenology and the drivers of phenological

change and potentially the role of phenology in biotic

interactions.

CNNs are most often trained and evaluated on large

and diverse standard datasets such as the COCO dataset

and the ImageNet dataset (3.2 million images) containing

many everyday objects such as people, electronic con-

sumer products, food products, animals, vehicles, etc.

(Deng et al., 2009; He et al., 2017; Lin et al., 2015; Red-

mon & Farhadi, 2018). Such benchmarks demonstrate the

capabilities of the CNNs but are perhaps less relevant for

specific in situ applications in ecology. Here, we trained

and applied the CNN on images collected in the field to

test the feasibility of automatic monitoring of flower phe-

nology. We used all images from a single camera for

either training, validation, or testing, ensuring that the

ability of the CNN to generalize and detect flowers in

images with unique backgrounds was tested. This

approach increases the risk of detection errors compared

to using images from the same camera for both training

and testing, but the ability to generalize is relevant in the

context of large-scale ecological monitoring. Despite the

difficult setting, the model detected flowers with high

accuracy and the detections represented the true flowering

phenology closely. Further, we were able to accurately

estimate traditional key phenological variables on the

basis of the cumulative sum of flower detections. This,

together with the fact that the image series were collected

with consumer-grade time-lapse cameras, makes the

method relevant and accessible for many research pro-

grams.We treat the transitions between flower stages (e.g.,

from bud to flower or from flower to senesced flower) as

abrupt, while they are in reality gradual. The high tempo-

ral resolution of the image series exacerbates the risk of

errors during this transition phase. We note that similar

problems may occur for both manual flower annotations

and automatic detections as well as for manual observa-

tion in the field. Naturally, basing the flower count on

images makes it possible to confirm results at any time by

inspecting the images. On a related note, flowers that

were partly occluded and where <40% of a flower was

visible were not annotated. However, the model proved

capable of detecting many of these flowers, which were

the cause of a large proportion of the false positives. We

count these as errors, but in fact, it shows that the model

is able to generalize and should be considered a quality.

These issues should be taken into account when assessing

the precision of flower detection models.

We treat the transitions between flower stages (e.g.,

from bud to flower or from flower to senesced flower) as

abrupt, while they are in reality gradual. The high tempo-

ral resolution of the image series exacerbates the risk of

errors during this transition phase. We note that similar

problems may occur for both manual flower annotations

and automatic detections as well as for manual observa-

tion in the field. Naturally, basing the flower count on

images makes it possible to confirm results at any time by

inspecting the images. On a related note, flowers that

were partly occluded and where <40% of a flower was

visible were not annotated. However, the model proved

capable of detecting many of these flowers, which were

the cause of a large proportion of the false positives. We

count these as errors, but in fact, it shows that the model

is able to generalize and should be considered a quality.

These issues should be taken into account when assessing

the precision of flower detection models.

Our method can still be further improved. Visually

inspecting the false-positive detections revealed that the

model had a tendency to falsely detect stones as flowers,

especially when they were overexposed. In some cases, a

single stone was the cause of a high proportion of the

false positives within a series. For example, 78% of the
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false positives in the sampled THUL 2018 A series were

repeated detections of a single stone, which due to over-

exposure might resemble petals of the flowers. Cameras

with greater flexibility in the settings, better optical prop-

erties, or a broader range of backgrounds in the training

data could alleviate this problem, which may also be less

pronounced for flowers that are not white. For our study,

we used a deep learning model based on the Faster R-

CNN framework. This framework has proven capable of a

wide variety of detection problems (Jiang & Learned-

Miller, 2017; Lin & Chen, 2018; Wan & Goudos, 2020)

and is thus a good candidate for novel applications. How-

ever, we note that object detection in computer vision is

an active research topic and new models may achieve

higher performance.

If a constant level of false-positive detections from the

detection model is assumed, the accuracy of the estima-

tion of onset, peak, and end of flowering will be sensitive

to the number of flowers within a plot. As the ratio

between correct positives and false positives will improve

with an increasing number of flowers, so will the preci-

sion of the detection model. Further, false positives affect

the cumulative sum of positives and thereby the accuracy

of the estimated phenology variables. For example, a long

tail of false positives before the actual flowering starts will

advance the estimated onset of flowering, while a long tail

of false positives after flowering has ended will delay the

estimated end of flowering. Finally, the estimate of phe-

nology variables is sensitive to the number of flowers on

which it is based, as few flowers may not represent the

true distribution of flowering in the population well. This

goes for traditionally collected phenology data as well as

for our automated method. Mounting the cameras higher

above the ground would allow for covering a larger area

and could ensure a minimum number of flowers, but

would reduce image resolution and possibly affect detec-

tion accuracy negatively. It is also possible to couple

near-surface cameras with drone surveys for phenological

context (Beamish et al., 2020). However, here we have

shown that even with tails at a maximum of 50% � the

length of the flowering season and for plots with few as

well as many flowers, the method produces accurate esti-

mates of the phenology metrics.

Image-based setups coupled with computer vision tech-

niques are increasingly being suggested for monitoring

flowers, especially in agricultural settings (Jiang

et al., 2020; Palacios et al., 2020; Wang et al., 2021). Such

methods can facilitate automated and efficient assessment

of phenology and crop yield forecasting, but often

requires human camera operators of custom-made mobile

imaging platforms. Here, we present a method for effi-

ciently obtaining flower phenology data in a logistically

challenging natural setting with permanently installed

cameras. To explore the current and future effects of cli-

mate change, standardized long-term image-based moni-

toring schemes should be implemented and maintained

to ensure rigorous and efficient data collection along with

the continuous development of methods to handle and

analyze the output of these schemes. Importantly, publicly

available high-quality and preferably annotated datasets

are very relevant for developing methods with high-

performance and broad applicability. In parallel, the focus

should be on continuous digitization and analysis of

herbarium specimens to create a historical context for

evaluating newly collected data. Computer vision tech-

niques have proven valuable for the analysis of herbarium

specimens (Pearson et al., 2020; Schuettpelz et al., 2017)

and the availability of large herbarium datasets will be

increasingly relevant as these techniques are refined. We

have focused our work on two species of Dryas, as these

are commonly included in the long-term monitoring of

flower phenology, but the overall methodology is generic

and we note that it would be suitable for many other

plant species. For the Arctic in particular, Silene acaulis,

Saxifraga oppositifolia, Rubus chamaemorus, and other

species with clearly defined flowers positioned close to the

ground are relevant candidate species. The automatic

detection and counting of other species require a fine-

tuning of the model to the species of interest using anno-

tated images.

In the present case, there were no flowering plant spe-

cies visually similar to the Dryas species within the sample

plots. In other settings, this might be the case. When

applying a pretrained model as the one presented here in

a new setting, the accuracy of the model detections

should be tested. In the case of our model, if other visu-

ally similar species are detected as Dryas, fine-tuning the

model with images containing other flower species in the

background included in the training data could help alle-

viate the issue. Alternatively, as deep learning methods

have proven capable of accurate species classification

despite low variation between classes, expanding the

training data to include annotations of other species

could facilitate multiclass detection and allow for compar-

ative studies between co-occurring species (Nilsback &

Zisserman, 2008; Spiesman et al., 2021). In any case, the

presented method can serve as a guideline for developing

and testing solutions for automatic flower phenology

monitoring in other settings.

We emphasize that there are many benefits to image-

based monitoring of phenology even without the deep

learning processing pipeline in place. Camera-based mon-

itoring elicits minimal disturbance to permanent plots

and image series constitute an archive of the phenology

of the captured species and contain additional relevant

information that can be extracted from the images, either
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manually or automatically. For instance, our method

could be expanded to include the detection of flower visi-

tors to count and classify pollination events through the

season. This would facilitate monitoring of interactions

between flowers and their visitors in very high temporal

and spatial resolution. To discern the effects of climate

change on the phenology and abundance of flowers and

how changes may affect interactions within the commu-

nity, we need such species-level knowledge (Prev�ey

et al., 2019; Tang et al., 2016). With our method, flower

visits could even be pinpointed to the individual flower

with manual or automatic tracking of single flowers

through the season and these data could be coupled to

the reproductive success of the flowers.

In conclusion, we have presented an automated pipeline

for monitoring flower phenology of specific species at high

temporal resolution and across regions. We have shown

how state-of-the-art computer vision and deep learning

methods can be applied to images collected in situ and

used to extract ecologically relevant data. The methodol-

ogy is easily expandable to new sites and optimal for long-

term monitoring of plots. Archived images can ensure

reproducibility of results and can be re-analyzed as new

questions arise or new methods are developed. The system

facilitates cost-efficient monitoring of vegetation plots at

unprecedented temporal resolution across full growing

seasons and our results demonstrate the great potential

of automatic image-based long-term monitoring of

flower phenology. The presented flower detection model

and associated code is available at https://github.com/

TECOLOGYxyz/AutomaticFlowerPhenology.
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Figure S1. Flower detection performance on the test set

for the standard model (1) and four modified models. Q:

Extended augmentation, R: Extended augmentation and

increased number of regions of interest (ROIs), S:

increased number of ROIs but without extended augmen-

tation, T: ResNet50 as backbone instead of ResNet101.

Model Q returns the highest F1 score and was used as the

flower detection model.

Figure S2. Left: The time required to process one image

at different levels of downscaling of the original image

dimensions (x and y).

Figure S3. Number of flowers manually annotated per

image through the season for each of 20 image series.

Figure S4. Number of flowers annotated (sampled

images) and detected (sampled series and 1-h series) per

image through the season for each of the four image ser-

ies in the four image series in the test set.
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