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ABSTRACT
Aim: We develop and test a cost framework to simulate the flyways of migratory seabirds, considering various environmental 
factors such as wind support, crosswind, travel distance, and food availability. Using this framework, we simulate potential 
migratory flyways for arctic terns and compare these simulations with tracking data. Our aim is to identify which combination 
of factors best explains the observed flyways. Ultimately, we seek to demonstrate how different environmental factors shape 
flyways.
Innovation: We simulated 195 possible seabird flyways using a newly developed cost function that takes into account a number 
of environmental variables. We focused on the Arctic Tern, a transhemispheric migrating seabird species. Our model accurately 
simulated most spring and autumn flyways across the Atlantic Ocean (median RMSE ± standard deviation for all five flyways: 
529 ± 201 km). The most accurate simulations for Arctic Terns breeding on Svalbard were those for which wind support made 
up ~70% of the total cost, while the best simulations for the Dutch population were those for which distance minimisation was 
~50% and food maximisation was ~30% of total costs. Finally, by analysing tracking data using a machine-learning algorithm 
factoring in both wind support and crosswind, we were able to determine airspeed and subsequently infer whether the observed 
flyways optimised time and/or effort.
Main Conclusions: This analysis showed that Arctic Terns breeding on Svalbard followed effort-optimising flyways, whereas 
those that breed in the Netherlands followed time-optimising flyways. Our simulation-to-observation approach demonstrates 
that Earth's environmental and physical properties likely underlie the global distribution of migratory birds and therefore need 
to be considered in studies that evaluate the long-range movement patterns and distribution of birds.

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is 

properly cited.

© 2025 The Author(s). Global Ecology and Biogeography published by John Wiley & Sons Ltd.

https://doi.org/10.1111/geb.70016
https://doi.org/10.1111/geb.70016
mailto:
https://orcid.org/0000-0003-2273-2280
mailto:n.skyllas@rug.nl
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1111%2Fgeb.70016&domain=pdf&date_stamp=2025-02-25


2 of 13 Global Ecology and Biogeography, 2025

1   |   Introduction

A flyway is the full geographic range that a migratory bird spe-
cies (or groups of related species or different populations within 
the same species) travels each year, moving from breeding areas 
to non-breeding habitats (Boere et al. 2006). At the global scale, 
the location of flyways is related to the configuration of oceans 
and continents, and to natural barriers (e.g., deserts, mountain 
ranges) and corridors (e.g., rivers, valleys) of the landscape. At 
a finer spatial scale, the main environmental drivers shaping 
a given flyway are wind conditions and food availability (Safi 
et al. 2013; Lisovski et al. 2021). Migratory birds require suffi-
cient resources before, during, and after their migration in order 
to successfully complete the migration, maintain their repro-
ductive output, and avoid population decline (Weber et al. 1998; 
Prop et al. 2003; Rakhimberdiev et al. 2018). Energy expendi-
ture during flight is decreased by tailwinds and increased by 
headwinds and crosswinds (Kranstauber et al. 2015; Loonstra 
et al. 2019). As a result, flyways are usually paths that offer short 
routes and/or favourable wind conditions while also providing 
the resources necessary to complete a migration.

Previous studies have successfully used a framework of cost 
minimisation to understand why certain flyways are used. For 
instance, Felicísimo et al. (2008) and González-Solís et al. (2009) 
simulated the migration of three shearwater species (Manx 
Puffinus puffinus, Calonectris diomedea, and Calonectris ed-
wardsii) over the Atlantic Ocean by using cost functions 
that rewarded movements supported by tailwinds. Similarly, 
Kranstauber et  al.  (2015), Loonstra et  al.  (2019) and Lisovski 
et al. (2021) used prevailing wind conditions to simulate bird mi-
gration with a function that minimised time and consequently 
maximised survival. They either connected the flight time to the 
wind-induced flight cost and consequently to an increased risk 
of in-flight mortality (Loonstra et al. 2019) or assumed that travel 
time has a sigmoidal relationship with mortality (Kranstauber 
et al. 2015; Lisovski et al. 2021). These studies support the idea 
that flyways reflect the circumstances in which birds can per-
form successful migrations.

While it is possible to use such least-cost-path modelling ap-
proaches to simulate bird flyways (e.g., Kranstauber et al. 2015; 
Lisovski et  al.  2021), a major challenge is deciding which costs 
these models should minimise. To date, most studies have focused 
on the effects of wind, particularly tailwind. In accordance with 
optimal migration theory (Alerstam and Lindström 1990)—which 
suggests that birds aim to minimise the total cost of migration by 
balancing energy expenditure, time, and risk—these models have 
primarily focused on minimising either time or effort. Tailwinds 
can reduce energy expenditure, shorten travel duration, and ul-
timately influence survival and reproduction by allowing an 
animal to conserve energy. Although these studies have yielded 
valuable insights into why certain wind-supported flyways are 
used (Vansteelant et al. 2017; Norevik et al. 2019), they have also 
revealed that some birds use flyways that seem less optimal in 
terms of wind support (Loonstra et al. 2019; Lisovski et al. 2021).

The fact that migratory birds follow flyways other than the most 
wind-supported ones suggests that a broader range of factors 
and strategies is at play, beyond merely optimising wind sup-
port. A notable contribution to this understanding is the study 

by Revell and Somveille  (2017), who developed a mechanistic 
model simulating bird movements away from a location and 
across a potential landscape shaped by two environmental vari-
ables: chlorophyll a and wind support. Their approach, akin to 
least-cost-path modelling, was successfully used to simulate the 
movements of black-browed albatrosses (Thalassarche melano-
phris). An interesting next step would be to include even more 
environmental factors in addition to wind support and food 
availability (e.g., Lisovski et  al.  2021). Expanding our under-
standing by including factors such as crosswinds and travel 
distance will also improve our ability to accurately assess the 
influence of global change on flyways. However, including more 
environmental factors will also present new challenges related 
to disentangling complexity: (1) to what extent does each fac-
tor determine if a flyway is used by migratory birds; (2) what 
outcome is optimised as a result of combining different factors 
in different ways; and (3) how do these outcomes relate to the 
traditional frameworks of time, energy and risk minimisation?

Here we develop and test a multi-factor cost framework to sim-
ulate least-cost paths for many different combinations of wind 
support, crosswind, travel distance and food optimisation. We 
use this framework to simulate potential migratory flyways 
for a seabird species that migrates across the Atlantic Ocean: 
the Arctic Tern (Sterna paradisaea). We use geolocator data to 
track these birds and determine which simulated flyway, and 
thus which combination of the four environmental factors, best 
matches the observed flyways. Hence, we employ a simulation-
to-observation approach which differs from the more usual 
observation-to-simulation approach of tracking individual birds 
and then trying to understand the resulting tracks. From the 
geolocator tracking, we also infer the birds' response (airspeed 
regulation) to wind conditions by using a machine-learning al-
gorithm. Finally, by annotating the simulated flyways with wind 
data and applying the inferred bird's response, we show that dif-
ferent flyways form as the result of different responses to the en-
vironment, and in consequence different costs are minimised.

2   |   Methods

2.1   |   The rWind Package

rWind is an R language package that allows the user to compute 
wind connectivity between locations (for a detailed description, 
see Fernández-López and Schliep 2019). It uses friction layers: 
maps of a geographical/ecological characteristic that may influ-
ence dispersal or movement ability. It then applies the Dijkstra 
algorithm (Dijkstra 1959) to compute the Least Cost Path (LCP) 
between two points. When using gridded wind data, the cost 
between two positions depends on the wind speed and wind di-
rection of the source grid cell and on the location of the target 
grid cell. To compute this cost, the rWind package implements 
by default the algorithm proposed by Muñoz et al. (2004) and the 
update by Felicísimo et al. (2008).

(1)cost =
HF

S

HF = {
0.1, HRMA=0

2×HRMA, HRMA≠0
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Where S is the wind speed and HRMA is the horizontal rel-
ative moving angle (the angle in degrees between the wind 
direction and the direction of the movement trajectory to the 
target cell). Finally, HF is the horizontal factor (a function of 
the HRMA).

We find that this cost formula results in questionable costs in 
some cases. For example, flying into strong headwinds leads to 
lower costs than following weak tailwinds (Figure S1). Dividing 
the HF by wind speed results in reasonable cost values only 
for tailwinds: weak tailwinds have higher costs than strong 
tailwinds. However, in the case of crosswinds and headwinds, 
strong winds illogically result in lower costs than weak winds, 
and as a result the simulated birds will primarily follow strong 
cross- and headwinds (in addition to tailwinds). In this study we 
will develop a new (multi-component) cost formula (see details 
below), which we use in combination with the rWind package, 
avoiding the above-mentioned issues with the original cost for-
mula, and leading to more realistic results for a wide range of 
bird flight behaviours. Our cost formula relies on two types of 
environmental data: wind and chlorophyll a (a proxy for food).

2.2   |   The Cost Formula

2.2.1   |   1st Component: Standardised Parallel Wind Cost

The first component of the cost formula is the “standardised 
parallel wind cost” (w_cost), which calculates the wind-induced 
cost of movement from the source cell (I) to the target cell (j), on 
a 2-dimensional surface, using the following formula:

where |
→

w |: wind speed (magnitude of wind vector), i: the source 
cell, j: the target cell and �: the angle between the wind vector 
(
→

w ) and the bird's groundspeed (
→

g).

This component focuses on the axis parallel to the bird's move-
ment and calculates the wind support that a bird experiences 
when moving between two cells (|

→

w | × cos�), resulting in 
movements with tailwinds (high positive values of wind support 
in m/s), headwinds (high negative values) and very weak winds 
or crosswinds (close to zero). It then subtracts the 99th percentile 
(P99) of the per grid cell–calculated wind support (high positive 
value, strong tailwinds), converting grid cells with strong tail-
winds to zero and cells with headwinds to even higher negative 
values. In the following step, all cells are converted to cost (by 
taking their absolute values). Finally, all cells are standardised 
between zero and 100, by dividing with the parallel wind cost's 
99th percentile and multiplying by 100: cells with low cost (close 
to zero Standardised Cost Units—SCU) are the ones that provide 
tailwinds, while those with high cost values (100 SCU) are the 
ones that exhibit headwinds (Figure 1a). If the LCPs were calcu-
lated using only this component, they would always follow the 
most favourable winds (highest wind support, see Figure 2a).

2.2.2   |   2nd Component: Standardised Crosswind Cost

The second component is the “standardised crosswind cost”  
(c_cost), which focuses on the axis perpendicular to the bird's 
movement and calculates the crosswind that a bird experiences 
when moving between two cells, resulting in movements with 
strong (high positive values), or weak (low positive values) cross-
winds. Cells with low cost (close to zero SCU) are the ones that 
have weak crosswinds, while those with high cost values (close 

windsupporti,j = |
→

w |i × cos�i,j

parallel wind costi,j= |windsupporti,j−P99(windsupport)|

(2)

standardised parallel wind costi,j =
100

P99(parallel wind cost)
× parallel wind costi,j

FIGURE 1    |    (a) The range of the standardised parallel wind cost formula: Strong tailwinds (high wind speed combined with low angle between 
the bird's and the wind's direction) result in low cost (blue colour), while strong headwinds (high wind speed combined with high angle) result in 
high cost values (red colour). Every other wind-angle combination (weak tailwinds, weak headwinds, crosswinds) results in intermediate cost values 
(green colour). (b) The range of the standardised crosswind cost formula: Tailwinds and headwinds result in low cost, while strong crosswinds result 
in high cost values.
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to 100 SCU) are the ones that have strong crosswinds (Figure 1b). 
If the LCP were to be calculated using only this component, then 
the path with the lowest cost would always be the one with the 
weakest perpendicular to the bird's direction winds (Figure 2b).

where |
→

w |: wind speed (magnitude of wind vector), i: the source 
cell, j: the target cell and �: the angle between the wind vector 
(
→

w )and the bird's groundspeed (
→

g).

2.2.3   |   3rd Component: Standardised Distance Cost

The third component of the formula is the “standardised dis-
tance cost” (d_cost) or simply the cost defined as the number 
of grid cells (which of course depends on the resolution, i.e. the 
grid cell size) a bird has to travel between two locations, and is 
calculated using the following formula:

All grid cells of the cost surface take the same value: the median 
(P50) of the w_cost Formula (2). With this method, birds get pe-
nalised by accumulating more cost when using a longer path. If 
the LCPs were calculated using only this component, then they 
would always take the shortest possible path (Figure 2c).

2.2.4   |   4th Component: Standardised Food Cost

The fourth component of the formula is the “standardised food 
cost” (f_cost), defined as the cost based on the availability of food 
for seabirds, using chl-a (chlorophyll a) as a proxy. A gridded chl-a 

remote sensing dataset is used as the cost surface, after applying 
a logarithmic transformation due to the positively skewed chl-a 
values. Following this transformation, all transformed values > 
−1 were replaced by −1. This approach converts all cells with 
an actual chl-a concentration over 0.1 mg/m3 to cells with max-
imum values, that is, the most productive ocean areas. Finally, a 
value of 1 was added to all cells in order for the most productive 
grid cells to have a value of 0 (selected after performing a sensi-
tivity analysis, see Figure S2), their absolute values were taken, 
and were standardised between zero and 100, resulting in highly 
productive areas having cost values close to zero SCU, and low-
productivity areas having high cost values (close to 100 SCU).

where i: the source cell and j: the target cell.

If the LCPs were calculated using only this component, then 
birds would always follow the most productive path to the desti-
nation (Figure 2d).

2.3   |   Combining All Components

Since birds most likely do not have a simplistic flight strategy (e.g., 
“always follow the tailwinds”) but rather a combination of strate-
gies per location and per time of the year, even down to a subpopu-
lation level, we use combinations of all four described components 
(see Formula (6)). Note that in this equation the final cost is simply 
based on linear relationships with the four cost components, as 
by lack of further knowledge we avoid making assumptions about 
the nature of these relationships, whereas in reality some might 
be non-linear and/or include thresholds (e.g., the food cost). The 
assigned weights (a, b, c, d) can take any value between 0 and 1 

crosswind costi,j = |
→

w |i × sin�i,j

(3)

standardised cross wind costi,j =
100

P99(crosswind cost)
× crosswind costi,j

(4)
standardised distance costi,j = P50(standardised parallel wind cost)

food costi,j = |
|log(ch la)i + 1||

(5)standardised food costi,j =
100

P99(food cost)
× food costi,j

FIGURE 2    |    Maps of cost (background colour) calculated using only (a) the first (parallel wind), (b) the second (crosswind), (c) the third (distance) 
and (d) the fourth (food) component of the complete cost formula. Cost per grid cell is calculated for a bird moving from South to North, and the red 
lines show the least cost path for each cost surface for birds migrating to Svalbard and to the Netherlands (tracks end in Iceland due to constant day-
light limiting the accuracy of Geolocators). Projection used: Mollweide.
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(for the w_cost and d_cost components) and between 0 and 0.5 for 
the c_cost and f_cost components. These thresholds were selected 
after performing a sensitivity analysis (Figure S3). During these 
tests, high values (over 0.5) for weights b (c_cost) and d (f_cost) 
yielded, in multiple cases, very long and unlikely flyways and im-
proved the root mean square error (RMSE) of the simulations only 
marginally. The weights have been varied using an increment of 
0.1 and their sum has to equal 1.0.

These simple rules result in a total number of 195 possible com-
ponent combinations, yielding 195 different cost formulas and 
195 cost surfaces with cost values per cell between 0 (minimum) 
and 100 SCU (maximum). Each of these surfaces has a unique 
LCP, and as a consequence, each simulation is repeated 195 
times, producing 195 potential LCPs, each with its own unique 
weight combination. The rule requiring the sum of the weights 
to always equal one enhances the interpretability of the results, 
as each LCP corresponds to a unique combination of coeffi-
cients. If the sum were allowed to vary, we would need to anal-
yse multiple LCPs with effectively the same coefficient ratios. 
For example, the combination a = 0.7 and b = 0.3 (sum = 1) is 
mathematically equivalent to a = 1.4 and b = 0.6 (sum = 2), lead-
ing to redundancy in the analysis.

where w_cost: standardised parallel wind cost, c_cost: stan-
dardised crosswind cost, d_cost: standardised distance cost, 
f_cost: standardised food cost, and a, b, c and d: weights of the 
four cost components.

The RMSE was calculated as the square root of the mean 
squared distance (in km) between the simulated and the ob-
served longitudinal position of the birds per 10° latitudinal bin.

where ŷi: predicted longitudinal position along a LCP, yi: ob-
served longitudinal position of tagged birds, and n: number of 
positions along the flyway.

2.4   |   The Environmental Data

Arctic terns typically migrate at low altitudes, near the water sur-
face (Gudmundsson et al. 1992; Hedenström and Åkesson 2016); 
thus, we use the zonal (u10) and meridional (v10) surface wind 
components from the ECMWF Reanalysis v5 (ERA5) as ac-
tual wind conditions, at a spatial resolution of ~25 km and at 
an hourly temporal resolution. Six years of data (2012–2017) 
were used (Hersbach et  al.  2023), averaged over seasons (win-
ter: December–February, spring: March–May, summer: June–
August, and autumn: September–November) and re-gridded to 
a spatial resolution of ~100 km (Schulzweida 2020). Running the 
model at a higher spatial resolution (25 km) produced similar re-
sults (Figure S4). Additionally, our intention is for our model to be 
compatible with ESM data in later studies, so we decided to use 
the average spatial resolution among Earth System Models (ESM): 
100 km. Out of all four seasons, we use only the March–May 

and the September–November data for spring and autumn mi-
gration simulations, respectively, in order to cover the largest 
parts of the arctic tern migration periods (Egevang et  al.  2010; 
Volkov et  al.  2017). Finally, even though seabirds mostly use 
overwater routes, recent studies have revealed that several spe-
cies (streaked shearwaters, arctic terns, common terns, sandwich 
terns and long-tailed skuas) in some cases use overland passages 
(Ward 2000; Wernham 2002; Wynn et al. 2014; Yoda et al. 2017; 
Lamb et al.  2018; Redfern and Bevan 2020). However, because 
overland passages are the exception, and since we believe that it is 
more important, as a first step, to fine-tune and evaluate the mod-
el's performance for the three fundamental factors (wind, food 
and distance), we decided to mask out land grid cells.

Following previous studies, we used Chlorophyll a (chl-a) as 
a proxy for seabird-related ocean productivity (Hromadkova 
et al. 2020; Morten et al. 2023). Seabirds do not consume phyto-
plankton directly but rather rely on large zooplankton and small 
fish (Egevang et al. 2010) which appear later in the same produc-
tive regions (Asch 2015; Suchy et al. 2022). We used chl-a data 
from the European Space Agency Ocean Colour Climate Change 
Initiative (ESA OC-CCI), version 5.0 dataset (Sathyendranath 
et al. 2019, 2021). The ESA OC-CCI program generates a set of 
validated essential climate variables from satellite observations. 
Six years of chl-a data (2012–2017) were used for the arctic terns, 
at a spatial resolution of 4 km and at a monthly temporal resolu-
tion. The data were then converted to the same spatiotemporal 
resolution as the ERA5 wind data (25 km). Since we are using 
seasonal means (3 months), a lag of a few weeks between phy-
toplankton growth and fish growth is not expected to introduce 
large uncertainties, so we assumed that chl-a can be used as a 
proxy for the productive ocean regions.

2.5   |   Tracking Data

For the evaluation of the simulated flyways, we used bird track-
ing data from a total number of 72 arctic terns equipped with 
geolocators (for details see Skyllas et al. 2023), from two differ-
ent populations: Svalbard (n = 61) and the Netherlands (n = 11). 
The median starting location of each population (median po-
sition of the first moving datapoint of the birds) was used as a 
starting point for all simulations. The median longitudinal po-
sition of each population was calculated per 10° of latitude and 
compared to the longitudinal position of each simulated flyway 
(195 in total, median per 10o lat). The 20 simulations with the 
lowest RMSE when compared to observations (tracking data) 
were selected as the top20 and were used for further analysis 
(Table 1 and Figure 4). An additional case study using three pop-
ulations of sooty shearwaters (for details see Shaffer et al. 2006) 
is available in the Supporting Material (Figures S5–S8).

2.6   |   Optimal Flyway Calculations

For each LCP, its length, median wind support, and median 
crosswind were evaluated. The length was calculated as the 
sum of the great circle distances between the consecutive points 
of each trajectory, while wind support and crosswind were de-
termined using Formula (2) (wind support) and Formula (3) 
(crosswind cost).

(6)
costi,j = a ×w_costi,j + b × c_costi,j + c × d_costi,j + d × f_costi,j

(7)RMSE =

�
∑n

i=1

�
ŷi−yi

�2

n
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A machine learning (ML) algorithm, gradient boosting regres-
sion, was trained on the arctic tern tracking data in order to infer 
the bird's airspeed (the speed of the animal relative to the air) 
from the prevailing wind conditions (wind support and cross-
wind, Figure  3a) and its location. Gradient boosting is a ML 
technique using an ensemble of weak prediction models, that is, 
models that make very few assumptions about the data, which 
are typically simple decision trees. This method is able to detect 
nonlinear relationships between the target (dependent) variable 
(airspeed) and the features (independent variables: wind support 
and crosswind). The goal was to fit the trained ML algorithm on 
the wind conditions of the simulated flyways (after annotating 
them) and predict an airspeed value for each location. Knowing 
the two sides of the triangle of velocities (McLaren et al. 2012; 
Hedenström and Åkesson  2016), and the angle between the 
groundspeed (speed of the animal relative to the ground) and 
wind vectors allowed for solving the third side of the triangle 
(groundspeed, Formula (9)).

where |
→

w |: wind speed (magnitude of wind vector), i: the source 
cell, j: the target cell and �: the angle between the wind vector (

→

w)  
and the bird's groundspeed (

→

g).

Consequently, three more metrics were calculated for each of 
the 195 LCPs: the median airspeed, the duration (by summing 
the time needed for a simulated bird to cross a grid cell, as deter-
mined by the grid cell's dimensions and the bird's groundspeed, 
per LCP):

and finally, the total effort by summing the time-weighted air-
speed at each grid cell, per LCP: grid cells with lower weights 
(less time for the simulated bird to cross the grid cell) contrib-
uted less to the total effort compared to grid cells with higher (8)

airspeedi,j=

√

groundspeed2
i,j+ |

→

w |2
i
−2×groundspeedi,j× |

→

w |i×
(
cos�i,j

)

(9)

groundspeedi,j= |
→

w |i×cos�i,j+

√

airspeed2
i,j− |

→

w |2
i
×
(
sin�i,j

)2

(10)duration =

n−1∑

i= 1

timei

TABLE 1    |    Mean RMSE of the top20 simulations (simulated flyways with the lowest RMSE), and the number of simulations within 1σ from the 
minimum simulated flyway RMSE.

Migration
Top 20 Mean 

RMSE ±1 σ (km)

Simulations within 1σ 
from the minimum 

RMSE (number)
Simulations within 1σ from 

the minimum RMSE (%)

Svalbard spring 508 ± 19 60 31

Netherlands spring 334 ± 7 105 54

Svalbard autumn—America 667 ± 71 18 9

Svalbard autumn—Africa 937 ± 55 33 17

Netherlands autumn 529 ± 36 87 45

FIGURE 3    |    Airspeed (colours) against wind support (x-axis) and crosswind (y-axis) for each arctic tern location (dots). The airspeed of the birds 
was (a) calculated using trigonometry on the GLS tracking data, with the wind conditions and the bird's groundspeed per location, while in (b) the 
airspeed was calculated by applying the trained ML algorithm on the wind conditions of the annotated tracking data.
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weights (more time for the simulated bird to cross the grid cell). 
Total effort is thus similar to the “total air distance”, as used by 
Geisler et al. (2022), and has the same unit (km).

Out of the 195 LCPs, a total number of 60 per migration (unique 
combination of population and season, for example: Netherlands 
spring), were selected for further analysis (Figure  4): the 10 
LCPs each with (a) the highest median wind support, (b) low-
est median crosswind, (c) highest median groundspeed, (d) 
shortest distance, (e) shortest duration and (f) lowest total ef-
fort. For visualisation purposes, each of these top10 groups of 
LCPs, were clustered using the algorithm from Adrienko and 
Andrienko  (2011). This algorithm detects the “characteristic 
points” of the trajectories (start and end points, points of signif-
icant turns, and points of significant stops), and groups them 
based on spatial proximity. Then, for each pair of points, it 
aggregates the trajectory segments by counting the number of 
movements and computing the durations, lengths, and average 
speeds between the two points. This resulted in spatially gener-
alised trajectories per cluster of top10 LCPs. The “shortest du-
ration” cluster and the “lowest total effort” clusters are used as 
the “time optimising” and the “effort optimising” clusters from 
this point on, respectively. We refer to “effort minimisation” and 
not “energy minimisation”, as the latter incorporates fuelling at 
non-breeding sites; we chose to omit the fuelling components of 
migration, including staging and wintering sites, to focus on the 
(flapping) flight component (see Alerstam and Lindström 1990).

3   |   Results

Out of the 195 simulated flyways, we selected the 20 LCPs with 
the lowest RMSE compared to tracking data, in order to evaluate 
the effectiveness of our LCP method. The model succeeded in 
simulating almost all arctic tern flyways (Figure 5a–e), whether 
they follow wind circulation patterns by aligning with the pre-
vailing westerlies in the mid latitudes and the easterlies in the 
lower latitudes and maximising wind support (Svalbard spring 
and Svalbard America autumn) or not (both Dutch migrations, 
and Svalbard Africa autumn). Our simulations closely follow 

the S-shaped flyway by the Svalbard birds in spring (RMSE ±1 
σ = 508 ± 19 km) as well as the straighter flyway of the Dutch 
population along the African coast (RMSE ±1 σ = 334 ± 7 km). 
Similarly, the wind-supported autumn Svalbard migration 
along the American coastline, as well as the autumn Dutch 
migration along the African coastline, both yield comparable 
RMSE (667 ± 71 km and 529 ± 36 respectively). However, the 
autumn African flyway of the Svalbard population proves to 
be more challenging than the others, as the model fails to sim-
ulate the visit of the arctic terns to the North Atlantic staging 
site before continuing their southward journey. This discrep-
ancy in the Northern Hemisphere results in an elevated RMSE 
(937 ± 55 km). However, when simulations were split into two 
parts with the North Atlantic staging area as an intermediate 
stop (Figure S10), the model was able to accurately simulate the 
entire flyway and generated at least 20 LCPs with low RMSE (311 
and 616 km for the first and the second section, respectively).

Knowing how the observed flyways were simulated can lead to 
insights about the environmental factors responsible for each 
flyway's general shape. The two American flyways (Svalbard 
spring and Svalbard autumn—America), as hinted by their shape 
which follows the easterly trade winds in the lower latitudes and 
the westerlies in the mid latitudes, required a large contribu-
tion from the wind support component (median weight a = 0.7) 
signifying the reliance on wind circulation for arctic terns that 
opt for a tailwind-optimisation strategy. On the other hand, the 
African coast flyways require more complex strategies. All three 
of these (Netherlands spring, Netherlands autumn and Svalbard 
autumn—Africa) consist of a blend between crosswind minimi-
sation, distance minimisation, and food optimisation (weights 
b, c and d, respectively), with weights for distance minimisation 
dominating (median values between 0.4 and 0.6). Interestingly, 
food appears to be more important in autumn (median weight 
d = 0.3) than in spring migrations (see also Figure S3).

Disentangling the complex interplay between wind conditions, a 
bird's efforts (airspeed) and the resulting groundspeed is neces-
sary when addressing the issue of optimal migration. Practically, 
this means that the bird needs to exhibit a “specific flight be-
haviour” or, in other words, it needs to adjust its airspeed ac-
cording to the prevailing wind conditions in a realistic way. For 
example, a bird might compensate for strong winds, resulting in 

(11)total effort =

n−1∑

i= 1

(
airspeedi × timei

)

FIGURE 4    |    Flowchart describing the main processing steps for the datasets used in this study.
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8 of 13 Global Ecology and Biogeography, 2025

a high airspeed value. We approached this challenge by training 
a machine learning algorithm on the arctic tern tracking data. 
More specifically, we used the bird's wind conditions (wind sup-
port and crosswind experienced by the bird) to predict its air-
speed, which resulted in an ML model with wind support and 
crosswinds having relative importances of 65% and 35% respec-
tively. Moreover, we trained a second model using additional 
features: the bird's population (Svalbard or Netherlands), sea-
son, position (longitude and latitude) and wind conditions (wind 
support and crosswind) from our tracking data. This resulted in 
an ML model with three dominant features: wind support (rela-
tive importance for the ML algorithm: 59.2%), crosswind (31.3%) 
and latitude (7.9%), indicating that the arctic terns' airspeed de-
pended mainly on the wind, but also on the latitude that the bird 
was at (Figure S11). However, since the addition of longitude and 
latitude as features could lead to an overfitting of the model for 
the specific birds (arctic terns) flying over the AO, we decided to 
use the first, more general model, including only wind support 
and crosswind. This, more general model, captured the general 
pattern of the arctic terns' “specific flight behaviour” reasonably 
well (Figure 3a,b, RMSE = 2.96 m/s, R2 = 0.6).

Using the ML—derived airspeeds, we were able to calculate the 
simulated LCPs offering time- or effort-optimisation (migrations 
with the shortest durations and the lowest total efforts, respec-
tively). During the two wind-supported migrations (Svalbard spring 
and Svalbard autumn—America), the arctic terns follow closely 
(RMSE = 527 km) the minimum total effort cluster (Figure  6a,c) 
which overlaps largely with the wind support and groundspeed 
maximisation clusters. Even though these effort-minimising fly-
ways are longer (in distance) than the time-minimising flyways 

(19,138 km vs. 16,332 km for Svalbard spring and 18,228 km vs. 
16,477 km for Svalbard autumn—America), they offer lower ef-
fort expenditure (13,364 km vs. 17,592 km for Svalbard spring and 
16,322 km vs. 18,710 km for Svalbard autumn—America) and 
higher groundspeeds (26.8 km/h vs. 24.8 km/h and 25.4 km/h 
vs. 24.7 km/h). Higher groundspeeds, practically, mean that the 
effort-minimising flyways only last a few days longer (28.7 vs. 
26.5 days and 29.1 vs. 27.4 days) than the time-minimising ones. 
The spring migration of the Dutch arctic terns is interesting 
(Figure 6b) since it seems to combine the best of both worlds: in the 
Southern Hemisphere they opt for a flyway that is not much longer 
than the shortest one (19,157 km) but offers higher wind support 
and groundspeed, combined with low crosswinds. At the same 
time, the aforementioned advantages translate to time- and effort-
minimising clusters being very close to each other, allowing the 
birds to travel fast and efficiently. It is in the Northern Hemisphere 
where they are faced with a decision: follow the (much longer) 
effort-optimising flyway or the (shorter) time-optimising one? In 
this part of the Atlantic Ocean they eventually stay close to the 
African coast, expend more effort than the effort-minimising clus-
ter (22,207 km vs. 18,524 km), face the headwinds, and still man-
age to complete a shorter trip (34.2 days vs. 35.2 days).

In the two autumn migrations along the African coast, the 
wind support and groundspeed maximising clusters (Svalbard 
autumn—Africa: 25,679 and 25,728 km, Netherlands au-
tumn: 22,120 and 22,175 km, see Figure 6d,e) are much longer 
than the shortest ones (Svalbard autumn—Africa: 17,383 km, 
Netherlands autumn: 13,250 km). It is this difference that re-
sults in optimal time and effort flyways largely overlapping and 
being close to the shortest routes. No matter how low the mean 

FIGURE 5    |    The 20 simulated flyways with the lowest RMSE (green lines) for each arctic tern (a–e) migration, with their starting and ending re-
gions marked by an orange triangle and an orange circle, respectively. The yellow lines depict the median longitudinal position of the tracking data 
per 10° of latitude, with the yellow shade showing the ±1σ. The second row contains box plots with the combination of weights (x-axis) that yielded 
the top20 simulations (f–j). Projection used: Mollweide.
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9 of 13

effort is in the wind-optimised clusters, they are still too long, 
resulting in elevated total effort values and forcing the time- and 
effort-optimising solutions to be shorter alternatives. In both 
cases, however, the actual tracking data deviate from the time- 
and effort-optimising clusters (but are captured by our top20 
simulations) and follow closely the African coast and potentially 
the productive ocean regions, which could further improve the 
energy balance of the effort-optimising clusters by increasing 
the energy input. In Svalbard autumn—Africa, both optimal 
clusters overlap in large parts with the shortest distance cluster. 
Following the wind circulation (high wind support and ground-
speed) would require the birds to deviate so much from their 

preferred direction of movement that it would result in very high 
total effort. Due to the position of their starting and end loca-
tions, it makes sense in terms of effort and time to simply follow 
the African coast, which also provides feeding opportunities 
and low crosswinds (Skyllas et al. 2023).

We then compared the actual strategies of the birds (using our 
top20 simulations) to the effort and time-minimisation strate-
gies. More specifically, the top20 Svalbard spring simulations 
have a mean total effort value and a duration close to that of 
the effort optimisation cluster, confirming what is shown in 
Figure 6: the Svalbard birds select an effort-optimising strategy 

FIGURE 6    |    Top10 simulated flyways for each of the seven optimisation strategies: Highest wind support, lowest crosswind, lowest airspeed, 
highest groundspeed, shortest length, shortest duration and lowest total effort, for each of the seven migrations (unique population and season com-
binations). The top10 flyways are depicted as clusters for clearer visualisation. Airspeeds are calculated from wind support and crosswind using the 
trained ML algorithm, groundspeeds using the law of cosines. The median longitudinal position of the tracking data (black dotted line) is plotted for 
reference. Projection used: Mollweide.
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FIGURE 7    |    (a) Mean total effort (km) for the arctic terns ±1σ (error bars) of the top20 simulations (green dots, lowest RMSE when compared to 
observations), of the top10 effort-minimising simulations (purple bars) and of the top10 time-minimising simulations (yellow bars), per migration (x-
axis). (b) Depicts the same, only for duration ±1σ (days). The purple and yellow bars can be seen as theoretical limits (in terms of effort and duration) 
of the two opposite strategies: Effort and time minimisation. The green dots are closer to the truth (depending on how well we simulated the actual 
flyways) and depict what the birds actually do.
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during the spring migration (Figure 7a,b). The Dutch spring mi-
gration, on the other hand, is closer to the mean effort of the 
time-optimising cluster but higher than the mean duration of 
this cluster. This is most likely due to the deviation (between 
the actual flyway and the time-minimising cluster, Figure 6b) 
in the Southern Hemisphere, and not because the birds follow 
an effort-minimising strategy. As a result, the Dutch arctic 
terns expend 56.4% more effort compared to Svalbard spring 
(22,207 ± 1099 km vs. 14,199 ± 559 km) and arrive almost 4 days 
(12.3%) earlier at their breeding grounds (34.2 ± 1.3 days vs. 
30 ± 0.9 days). Svalbard autumn—America was expected to be 
closer to the effort-optimising cluster values (16,322 km and 
29.1 days) but instead, the arctic terns actually spend 21,067 km 
(29.1% more effort) and 36.4 days (25.1% longer), probably due to 
the detour to the North Atlantic staging site, which is captured 
successfully by our top20 simulations (Figure 5c). However, the 
rewards of the staging site potentially offset these sacrifices.

Both autumn African flyways (Netherlands autumn and 
Svalbard autumn—Africa) have largely overlapping time- and 
effort-optimising clusters (Figure 6d,e). This can also be seen in 
Figure 7, with theoretical limits (mean values of the effort and 
time optimisation clusters) being close and offering little room 
for intermediate strategies. Capturing the Dutch birds' flyway 
well (Netherlands spring, Figure  5e) leads to mean effort and 
time values exactly as expected (Figure 7). However, the flyway 
followed by the Svalbard birds (Svalbard autumn—Africa) is nei-
ther effort- nor time-optimised. It is definitely short and grants 
weak crosswinds, but in no case does it follow the longer, more 
time- and effort-efficient clusters, resulting in higher total effort 
and duration values (24,541 km and 31.9 days) than theoretically 
expected (17,792 and 18,227 km, 28.9 and 28.2 days). This strat-
egy seems to sacrifice time and energy, but as with the Dutch 
population, it can potentially offer other advantages such as food 
(both in the North Atlantic staging site and in the African coast) 
and easier navigation (Skyllas et al. 2023) changing the total en-
ergy budget of this migration and rewarding their effort and time 
sacrifices.

4   |   Discussion

Based on a cost function that combines a limited number of en-
vironmental variables, we accurately simulated flyways of dif-
ferent shapes, lengths, and durations across both the Atlantic 
and Pacific Oceans. We show that these different flyways are 
the result of variable environmental conditions and different 
population-specific behaviours. For example, the characteristic 
S-shape of the Svalbard arctic terns results from following the 
westerlies and the trade winds, whereas the absence of this shape 
in the Dutch arctic terns results from flying against these same 
winds. We also show that these population-specific behaviours 
lead to effort minimisation in one population (Svalbard) and to 
time minimisation in the other (Dutch)—differences that are 
most likely related to a population-specific context that deter-
mines survival and reproduction. Overall, we accomplish this 
with a simple cost framework that can be expanded and adapted 
in future research to include more complexity and species. Our 
results demonstrate that Earth's environmental and physical 
properties underlie the global distribution of the migratory bird 
species used in our study and therefore need to be considered 

in studies that evaluate the long-range movement patterns and 
distribution of migratory birds.

The formation of flyways can be studied from observation-
to-simulation, but also from simulation-to-observation 
(Beatty 1994; Laland et al.  2011; Dickins and Barton 2013). A 
simulation-to-observation approach like ours focuses on “how” 
flyways are created by combining environmental conditions 
without underlying assumptions. This results in a suite of cli-
matically feasible flyways, each with different advantages; 
while one maximises groundspeed, another minimises cross-
winds, and so forth. These climate-derived flyways can then be 
compared with observed tracks, illuminating how the interac-
tions between climate and a bird's goals form the flyways that 
exist in nature. This differs from the more usual observation-
to-simulation approach of tracking individual birds and then 
trying to understand the resulting tracks.

Even when a model is in its early stages and validated with only 
limited datasets, it can still offer valuable insights (see sooty 
shearwater case study, Figures S5–S8). In our case, the 195 cli-
matically feasible flyways are based on simple, fundamental 
rules: they optimise wind, distance, and food availability, show-
ing what is “climatically feasible” for a bird to do. Moreover, these 
flyways tend to cluster (see Supporting Material, Figures  S4 
and S9), with each cluster optimising similar objectives. These 
clusters provide a rough estimate of the range within which 
bird observations, such as mean tracking positions, may fall. 
Additionally, the 195 climatically feasible flyways can be anno-
tated with wind conditions and airspeed (as demonstrated in our 
study) to visualise alternative hypothetical flyways that seabirds 
might follow between two locations if they were to optimise dif-
ferent objectives, such as time, effort, or wind support (as seen 
in the top10 clusters in our study). We argue, therefore, that 
even with limited validation, this approach offers a preliminary 
guideline for how flyways may be shaped and positioned based 
on environmental conditions, while also suggesting potential 
alternatives.

As our model continues to be refined and validated with addi-
tional tracking data across various species and regions, its pre-
dictive capabilities are likely to improve. Eventually, it may even 
allow for future flyway predictions without requiring extensive 
tracking data. This would enable researchers to study how birds' 
distribution and movement patterns are influenced by environ-
mental variables, and how these patterns might shift due to cli-
mate change (La Sorte et al. 2019; Somveille et al. 2020; Morten 
et al. 2023; Skyllas et al. 2023)—an essential insight for design-
ing effective climate mitigation strategies. A refined and well-
validated model could provide insights into the temporal and 
spatial distribution of birds without needing to track large num-
bers of individuals. Moreover, this simulation-to-observation 
model could serve as a tool for generating a priori hypotheses 
about time and effort minimisation before tracking begins, sug-
gesting strategies that have not yet been observed. In climate 
science, multiple models are often used to provide an “ensemble 
mean” and a measure of uncertainty, known as “model spread.” 
Similar approaches are common in machine learning. The ap-
plication of multiple “flyway models” would be similarly benefi-
cial, allowing us to quantify uncertainty and make more robust 
predictions. Efforts like the development of the Revell and 
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Somveille (2017) model are invaluable in this regard. We agree 
with their statement: “Without causal understanding, it is not 
possible to make reliable predictions for populations that have 
not yet been tracked, or for future movement patterns under en-
vironmental change” (Revell and Somveille 2017), and we would 
add one small amendment: “Without causal understanding and 
multiple, independently developed models…”.

To determine whether the observed behaviour minimises time or 
effort, the alternatives need to be simulated by making assump-
tions about different factors, for example, direction, airspeed 
and groundspeed. A common approach is to assume a constant 
airspeed (see Kranstauber et  al.  2015; Loonstra et  al.  2019; 
Morten et  al.  2023), use that value to calculate important pa-
rameters such as trip duration and groundspeed, and later iden-
tify time- and effort-optimised clusters. We believe that making 
such assumptions can obscure valuable information. For exam-
ple, assuming a constant airspeed yields an effort-minimisation 
cluster that is identical to the distance-minimisation cluster, 
since the cumulative effort expended by a bird depends on dis-
tance and daily effort (Figure S12). Similarly, assuming a con-
stant groundspeed yields a time-minimisation cluster that is 
the same as the distance-minimisation cluster; if groundspeed 
is constant, it has no influence on the duration of the journey, 
so only distance determines its duration (Figure S13). To disen-
tangle this ‘triangle of velocities’, that is, groundspeed, airspeed 
and wind support, we used a machine learning algorithm that 
factored in both wind support and crosswind to estimate air-
speed (Shamoun-Baranes et al. 2007). One notable finding was 
a considerable effect of latitude on airspeed. We hypothesise that 
this effect stems from latitude being a proxy for how far along 
arctic terns are in their journey; it is possible for a bird's strategy 
to change during migration as its short-term objectives change 
(Vansteelant et al. 2017; Skyllas et al. 2023), and latitude could 
be a reflection of this change.

Our model allows us to evaluate the differing impacts of multiple 
environmental variables on migrating birds. Although this is an 
advance compared to earlier models that only included wind sup-
port or food availability, there is still room for improvement. For 
one, our model assumes that the impact (weight) of each envi-
ronmental variable is constant from start to finish, but it is likely 
that their relative impacts, that is, in combination with a bird's 
objectives, will change throughout the migration or between 
years. Food availability, for example, will become more of a pri-
ority when a bird's fuel reserves are low. In addition, our model 
currently only allows linear relationships between the cost (y) 
and the four environmental variables (x), but some of these rela-
tionships might be non-linear in reality, for example, when more 
food does not lower the cost, because there is ample food already.

We have focused on the large spatiotemporal patterns of a sea-
bird species, and our framework likely needs to be expanded or 
adapted in order to apply it to other purposes and questions. For 
example, future researchers might consider incorporating addi-
tional environmental variables, such as pressure, temperature, 
and convection (Shamoun-Baranes et al. 2010). Another option 
would be to allow birds to adjust their flight altitude (Loonstra 
et al. 2019) by expanding the number of neighbouring cells from 
eight, as used in this study's two-dimensional cost surface, to 
24. This would include eight cells above and eight below the 

current altitude layer of the bird. Additionally, a new cost metric 
could be introduced to account for the wind's effect during these 
altitude changes. These changes could easily be implemented 
within the same framework. Future researchers may also want 
to use our model for different purposes, for example, to explain 
individual variation between individual birds or seasonal vari-
ation. Similarly, using daily or weekly environmental data in-
stead of seasonal data would enable a more detailed assessment 
of the consequences of temporal variation. A more technical ad-
justment that might be necessary for broader use is adopting a 
hexagonal grid (instead of using a rectangular grid as employed 
here). This idea stems from our model's oversensitivity to the 
initial location of the shearwater population that winters in 
Japan (Figure  S5d), which we believe is because this location 
is between two atmospheric circulation cells, and the extended 
zonal movement of this population at such high latitude tests the 
limits of models that use square grids. In a hexagonal grid, no 
additional corrections for the grid cell area need to be applied, 
since all hexagon cells have identical dimensions.

We focus solely on analysing time- and effort-minimisation paths 
and omit risk minimisation, even though this is also an important 
component of optimal migration theory. This omission is because 
we were unable to devise a simple but effective predation-risk 
proxy from environmental variables (but see McCabe et al. 2018, 
where risk is defined more broadly, and several mortality factors 
are combined). It should also be noted that we always refer to 
“effort minimisation” and not “energy minimisation.” The latter, 
which is used in optimal migration theory, incorporates fuelling 
at non-breeding sites; we chose to omit the fuelling components of 
migration, including staging and wintering sites, to focus on the 
(flapping) flight component (see Alerstam and Lindström 1990). 
Most arctic terns probably forage on the wing, so from our track-
ing data we neither observed nor studied stopovers. However, 
including stopover sites and accumulation rates, that is, the fuel-
ling component of migration, would give a more complete picture 
(see Alerstam and Lindström 1990). It is also important to note 
that to really understand ‘why’ a flyway is optimal, we would 
need to know how minimising time or energy impacts a bird's 
reproduction and survival. This underlines the need for tracking 
studies that simultaneously document mortality and reproduc-
tion, which are currently lacking.
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